WeBWorK PREP Webconference

Paul Pearson

Fort Lewis College
May 26, 2011

A. Preliminaries about Perl

1. Webwork is built from Perl

e advantages: scripted language, popular, fast,
etc.

* disadvantages: sometimes tricky syntax
(unavoidable?), restrictive data types

* specialization: Perl 2 PG (Problem
Generation) 2 MathObjects

2. Purpose of Webwork

* Deliver questions to students in two display
modes:

* HTML output
* PDF output

3. Data types in Perl

e #isthe comment character
e ' ends a line of code

* Perl has scalars, which are strings or numbers.
Named scalars start with S.
Sname = “Paul Pearson”;
sSnum = -5;

3. Data types in Perl

* Perl has arrays of scalars. Named arrays start
with @.

@birds = (“robins”,”blue jays”,”cardinals”);
@numbers = (-4, 3.14, 1000);

3. Data types in Perl

* To access a scalar inside an array, use
Sbirds[0];
Snumbers[1];
Notice that we used S, not @, when accessing
a scalar inside an array. Also, the first entry of
any array has index 0, not 1, so Sbirds[0] has
the scalar value robins, while Snumbers[1] has
the scalar value 3.14.

3. Data types in Perl

* You can get the index of the last element in an
array using one of these:
S#birds;
scalar (@birds) ;
both of which will return 2. Notice that the
number of elements in this array is 1 more
than the index of the last element.

3. Data types in Perl

* You can slice an array to create another array:
@basballteams = @birds[l..2];
will create an array @baseballteams with
elements “blue jays” and “cardinals”.

3. Data types in Perl

* Perl also has hashes (associative arrays of
scalars), which we won’t talk about right now.

4. Arithmetic in Perl

* Operations: +, -, *, /, ** (exponentiation), %
(modular arithmetic / remainder)

* Gotcha 1: Juxtaposition does not mean
multiply:
5 * 2; # correct
(5) (2); # incorrect
5 2; # incorrect

4. Arithmetic in Perl

* Gotcha 2: Mis the shift operator, not
exponentiation

5**2; # correct exponentiation
572; # incorrect

4. Arithmetic in Perl

e Gotcha 3: -- (minus minus) is the decrement
operator, e.g., 5-- is the same as 4. Correct
way: use extra space or parentheses:

5 - -3; # correct, value is 8
5-(-3); # correct, value is 8
5--3; # incorrect

4. Arithmetic in Perl

Gotcha 4: be careful with fractional exponents
(-4)**(2/3) will be interpreted as exp((2/3)
In(-4)) which is an error since In(-4) doesn’t
exist

((=4)**2)**(1/3); # correct
(=4)**(2/3) ; # 1lncorrect

5. Named functions in Perl

Trig functions are in radians: sin(2); asin(1/2);

Square root: sqrt(9); There is no named cube root function
Natural exponential: exp(2);

Natural logarithm: In(2); log(2); # so In(x) = log(x) in Perl!!!!
Base 10 log: logten(2);

Absolute value: abs(-2);

Sign / signum function:
sgn(-2); # returns -1
sgn(0); # returns 0
sgn(3.14); # returns 1

6. Relational and logical operators in
Perl

* Test whether two numbers are equal:
3 == 4; # returns 0 (false)

* Test whether two numbers are not equal:
3 1= 4; # returns 1 (true)

* Test using inequalities <, <=, >, >=:
3 > 4; # returns O

6. Relational and logical operators in
Perl

* Test whether two strings are equal:
“Roy” eq “James”; # returns 0

* Test whether two strings are not equal:
“Roy” ne “James”; # returns 1

6. Relational and logical operators in
Perl

* Are both things true? The and operator &&:
(3==(4-1)) && (3==(2+1));
returns 1

* |s at least one thing true? The or operator | |:
(3==5) || (3 != 4),; # returns 1

7. Conditional statements

e |[f-then statements:

Sa=5;

if (a==4) {Sb =3; }
* The test statement is in rounded parens: ()
 The code to be executed is in curly braces: { }

* Notice Sb=3; is complete, so the end is } not };

7. Conditional statements

* If-then-else statements:
Sa = 7;
if (Sa==7) {
Sb=3;
} else |
Sb=2;
}

7. Conditional statements

e |f-then-elsif-else:

S1 = 5;

1f ($1 == 5) {
Sa = 1;

} elsift (YRoy” eg “James”) {
Sa = 2;

} elsif (Si !'= 5) {
Sa = 3;

} else {

Sa = 4;
}

3. Loops

* For loops:
Sn = 4;
for ($i=1; Si < 5; Si++) {
Sn = Sn + $1i;
}

* Notice: the recursive assignment Sn = Sn + Si; is
allowed in Perl. We could have also done Sn +=
Si; in place of Sn = Sn + Si;

* The final value for Sn will be 14.

3. Loops

* Foreach loops run through arrays:

devens = (); # an empty array
foreach my $i (0..50) {
Sevens[$1i] = 2 * $Si;

J

e This will produce an array of 51 even numbers
0, 2,4,..,100

* Notice we used Sevens|[Si], not @evens[Si]

3. Loops

e do-until loop:
Sa = 3;
do { Sa=Sa+l; } until (Sa==10);
* Notice the { } for the code to be executed
* Notice the () for the condition to be tested

PG and MathObjects

1. History

The PG (Problem Generation) language was

written by Michael Gage and Arnold Pizer (U.
of Rochester)

PG is built on Perl

PG provides macros (prewritten, re-usable
code)

PG displays questions in two modes: HTML
and PDF output

1. History

MathObjects is an extension of PG written by
Davide Cervone (Union College)

M.O. “corrects” some quirks of Perl
M.O. make writing problems easier

M.O. provides more macros that are very
advanced

M.O. answer checkers provide more feedback

2. Structure of a PG file

Tagging info (for the indexing in the National
Problem Library)

Initialization (loading macros, etc.)
Setup (define parameters, randomization, etc.)

Main text (the part that gets displayed to
students)

Answer evaluation (checking the submitted
answers)

Solution (optional) and end document
(mandatory)

2. Structure of a PG file

e Tagging info:

DESCRIPTION
Equations for lines
ENDDESCRIPTION

KEYWORDS ('algebra','line', 'equation for line')

DBsubject ('Algebra')

DBchapter ('Basic Algebra')

DBsection('Lines')

Date ('05/26/2011")

Author ('Paul Pearson')

Institution('Fort Lewis College')
TitleTextl ('Intermediate Algebra')
EditionTextl ('3")

AuthorTextl ('Dewey, Cheatham, and Howe')
Sectionl('2.4"'")

Probleml ('14"')

2. Structure of a PG file

* |nitialization

i o i

Initialization

DOCUMENT () ;
loadMacros (
"PGstandard.pl",
"MathObjects.pl",
"AnswerFormatHelp.pl",

) 7

TEXT (beginproblem ()) ;

2. Structure of a PG file

* Setup

AR FFAARAAFFAARFAHS
Setup

Context ("Numeric") ;

Sa
Sh

non zero random(-5,5,1);
random (2, 9,1) ;

2. Structure of a PG file

* Main text

R R R R R R R ki
Main text

Context () -—>texStrings;

BEGIN TEXT

Find an equation for a line through the point
\((Sa,s$b) \) and the origin.

SBR

SBR

Ay = \) \{ ans_rule(20) \}

\{ AnswerFormatHelp ("formulas") \}
END TEXT

Context () ->normalStrings;

2. Structure of a PG file

e Answer evaluation

i

Answer evaluation
SshowPartialCorrectAnswers = 1;
ANS (Formula (" ($b/Sa) x")->cmp ()) ;
COMMENT ('MathObject wversion');

ENDDOCUMENT () ;

2. Structure of a PG file

e Comments on Tagging info:
DBsubject, DBchapter, DBsection are all
required to file a problem in the NPL

e Comments on Initialization:
PGstandard.pl and MathObjects.pl should
always be loaded
TEXT(beginproblem()); dynamically generates
the problem number in the homework set

2. Structure of a PG file

* Comments on Setup:
Don’t over randomize --- choose parameter
values that you would like to do by hand when
a student brings a question to you

2. Structure of a PG file

Comments on Main Text:

A BEGIN TEXT /END _TEXT block enters a new mode
with Perl mode outside, and TEXT mode inside

In TEXT mode, you can temporarily switch to LaTeX
mode via \(\) for inline math, or \[\] for displaystyle
math (put on a new line & centered)

BEGIN TEXT

This 1s inline \ (\displaystyle
\left(\frac{3}{4} \right)”*2 \).
This is on its own line \]|
\frac{3}{4}. \]

END TEXT

2. Structure of a PG file

e Comments on Main Text:

* |Inside TEXT mode, you can also switch to Perl
mode by using \{ \}, for example
BEGIN TEXT
\{ ans rule(20) \}
END TEXT
switches into Perl mode and runs the method
for generating an answer blank 20 characters
wide

2. Structure of a PG file

Comments on Answer Evaluation:

The method ->cmp() is defined for any
MathObject

Formula(“(Sb/Sa) x”)->cmp() takes the
student answer and compares it to the
Formula object, and returns either O or 1

ANS(); takes that result and records it in the
database of student scores

2. Structure of a PG file

e Comments on Answer Evaluation:

e The COMMENT(‘MathObject version’); only
shows up for professors in the Library Browser

* Don’t forget ENDDOCUMENTY();

3. Intro to MathObjects

* |In Perl,
Sf = “sin(x)”;
IS just a string
* |[n MathObjects
Formula (“sin(x)”);
iIs much more than just a string

3. Intro to MathObjects

A MathObject has methods defined on it

A method to evaluate functions ->eval()
Sf = Formula (“sin(x)"”) ;
Sf->eval (x=>5) ;

A method for (partial) differentiation ->D()

Sfp = SE->D('x");

A rudimentary simplification method ->reduce()

Formula (Y“sin(x) + -4")->reduce(); # sin(x)-4

A method that produces TeX ouput ->TeX()

BEGIN TEXT

What is the derivative of \($f->TeX () \)
END TEXT

An answer checker method ->cmp()
ANS (Sf->cmp ());

3. Intro to MathObjects

e Contexts can be modified:

Context (“Numeric”) ;
Sf = Formula (“sin(x*2)");

Context () -—>texStrings;

BEGIN TEXT

Find the derivative of \($f \).
SBR

\{ ans rule(20) \}

END TEXT
Context () ->normalStrings;

* Notice sin(x"2) with ~ instead of ** is OK within a MathObiject

* Since we changed to texStrings, Sf will be interpreted as Sf->TeX, and
produce the string “\sin(x"2)”

* Notice that we changed back to normalStrings before doing any answer
evaluation

3. Intro to MathObjects

e Contexts can be modified:

Context ("Numeric”)->variables—->add (
y=>"Real”
) ;

Sf = Formula (“x"2+y"2");

Context ("Numeric”) ;
Context () —>variables->are (t=>"Real”) ;

Sg = Formula (“sin (t+pi)”);

3. Intro to MathObjects

e Contexts can be modified:

Context (“Numeric”) ;

Context () -—>operators->undefine (W7, ”**");
Context () —>functions—->disable (“Trig”) ;
Context () —>functions—->disable (Yexp”) ;

Sf = Formula (“x"2"); # error
$g = Formula (“sin(x)”); # error

* This also disables operators and functions for student answers

3. Intro to MathObjects

 Contexts can be modified

Context (“"Numeric”) ;
Context () —>variables->set (

x => { limits=>[2,5] }
) ;

Sg = Compute (“sgrt (x-1)");

e Setting limits to [2,5], Webwork randomly selects
points X in this interval and compares the values of Sg
to the values of the student’s function at these points
(i.e., answer checking is numerical comparison). The
default is [-1,1].

3. Intro to MathObjects

Contexts don’t have to be modified

Context (“Numeric”) ;

14

Sf = Compute (“sqgrt (x)”)
]; # domain issues

Sf->{limits} = [2,5

$g = Compute (Ye” (20x)");
Sg->{limits} = [-0.25,0.25]; # e7(20) is too large

X I/)

Sh = Compute (“1ln(x)"”);
[4,10]; # domain issues

Sh->{limits} =

Different functions above have different problems that need to be dealt
with individually, so don’t modify the context (all of them simultaneously)

Resources

Resources

http://webwork.maa.org/wiki/File:WeBWorK Problem Authoring Tutorial.pdf
http://webwork.maa.org/wiki/SubjectAreaTemplates

http://webwork.maa.org/wiki/IndexOfProblemTechniques
http://webwork.maa.org/pod/pg TRUNK/
http://webwork.maa.org/viewvc/system/trunk/pg/macros/
http://tobi.oetiker.ch/Ishort/Ishort.pdf

http://webwork.maa.org/wiki/File:WeBWorK_Problem_Authoring_Tutorial.pdf
http://webwork.maa.org/wiki/File:WeBWorK_Problem_Authoring_Tutorial.pdf
http://webwork.maa.org/wiki/SubjectAreaTemplates
http://webwork.maa.org/wiki/IndexOfProblemTechniques
http://webwork.maa.org/pod/pg_TRUNK/
http://webwork.maa.org/viewvc/system/trunk/pg/macros/
http://webwork.maa.org/viewvc/system/trunk/pg/macros/
http://tobi.oetiker.ch/lshort/lshort.pdf

